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SUMMARY 

This report contains the results of an investigation carried out for 

the Langley Research Center Terminal Configured Vehicle (TCV) Program. 

The investigation generated and compared three path update algorithms de- 

signed to provide smooth transition for an aircraft guidance system from 

DME, VORTAC, and barometric navaids to the more precise MIS by modi- 

fying the desired 3-D flight path. The first, called the Zero Cross Track, 

eliminates the discontinuity in cross track and altitude error by designating 

the first valid MLS aircraft position as the desired first waypoint, while 

retaining all subsequent waypoints. The discontinuity in track angle is left 

unaltered. The second, called the Tangent Path also eliminates the discon- 

tinuity in cross track and altitude and chooses a new desired heading to be 

tangent to the next oncoming circular arc turn. No attempt is made to elim- 

inate the track angle error. The third, called the Continued Track, eliminates 

the discontinuity in cross track, altitude and track angle by accepting the 

current MLS position and track angle as the desired ones and recomputes the 

location of the next waypoint. The Zero Cross Track and Tangent Path schemes 

may only be used while flying along a straight line segment while the Continued 

Track scheme will reconstruct the path while on a circular turn segment. 

A method is presented for providing a waypoint guidance path construction 

which treats turns of less than, and greater than, 180’ in a uniform manner to 

construct the desired path. This method, when used in conjunction with the 

Continued Track method, may be used to reconstruct a smooth transition path 

to landing at every position in the terminal area including during turns. 



INTRODUCTION 

The use of MLS precision navaids in the terminal area generate transition 

problems in automated navigation and guidance for aircraft for systems which 

track RNAV paths defined by preset waypoints. These problems are described 

in Refs. l*and 2*a*long with suggested fixes and simulation studies of typical 

aircraft terminal approach patterns. This report develops the equations for 

three competitive Path Reconstruction Algorithms, using typical waypoint 

techniques in use on the TCV B-737 aircraft and similar commercial and 

military airplanes. 

A simulation study of the performance of these comparative algorithms 

is carried out and the resulting data are displayed. A separate appendix der- 

ives a Path Construction Method which treats turns of less than 180’ and 

greater than 180’ in a uniform and precise manner. The method makes possible 

a solution of the transition problems at every position in the terminal area, 

including during turns, and provides for a smooth landing approach with minimal 

redesign of the original path by eliminating the cross track, track angle, and 

altitude errors at the acquisition of the first complete valid MLS position. 

* 
1. Pines, S.; Schmidt, S. F. ; and Mann, F. : Automated Landing, Rollout, 
and Turnoff Using MLS and Magnetic Cable Sensors. NASA CR-2907, Oct. 1977. 

** 
2. Pines, S. : Terminal Area Automatic Navigation, Guidance, and 
Control Research Using the Microwave Landing System (MLS). Part 2 - RPJAV/MLS 
Transition Problems for Aircraft. NASA CR-3511, 1982. 

2 



I. PATH RECONSTRUCTION ALGORITHMS 

A. General Comments 

The method for constructing a path for RNAV guidance is given 

in Reference 1. The path is completely defined given the follotiing data: 

1) N, the integer number of waypoints designating the start, 

termination, and all interior corners at which turns are 

required. 

2) X (I) , the longitude, and 6 (I) , the latitude of each waypoint. 

3) h (I) , the height above the earth reference sphere, and ~~(1) , 

the desired airspeed at each waypoint. 

4) RT(I) 9 the turn radius, at each interior waypoint. 

These data, following the logic inReference 1, yield a series of path 

segments, consisting of straight lines and turns, which completely define the 

desired position and velocity of the aircraft. 

In developing a path reconstruction algorithm at RNAV/MLS transition, 

the competing methods each redefine a small number of waypoints, altitudes 

and desired velocities , and utilize the existing navigation structure to redefine 

the desired path. The objective is to minimize the aircraft maneuvers in the 

lateral and vertical directions at transition without unduly invading the originally 

designated airspace of the initial flight plan in the terminal area. 

Three algorithms will be developed here. They are: 

1) Zero Cross Track 

2) Tangent Path 

3) Continued Track 

All three eliminate the transition error in altitude and desired airspeed. The 

first also eliminates the cross track error. The second eliminates the cross 

track error but retains the location of the center and the radius of the next 

turn. The third eliminates both the cross track and the track angle error. The 

algorithms for the three competing methods are given below. 

3 



In addition to the above, in order to accommodate turns greater than 

180’ it is necessary to alter the structure of the path construction routine in 

order to allow the alternative of designating the center of the turn as an interior 

waypoint in place of the interior corner. The equations for these changes are 

contained in Appendix I. 

B. Zero Cross Track (ZCT) 

The algorithm for this transition path reconstruction is contained 

in Reference 1 and is included here only for the purpose of convenience of 

comparison. (See Figure 1). 

To begin, we note that the algorithm cannot be implemented in a turn 

nor can it be used if the MLS position lies within the turn circle. Furthermore, 

even if we are outside the turn radius, but too close to the incoming turn circle, 

large errors in track angle result and the advantage of a smooth transition is 

lost. In order to avoid these adverse effects we include a test for the minimum 

allowable distance from the initial turn circle center to execute the ZTC 

algorithm. 

Let RE be the position vector of the aircraft in the Fixed Earth Inertial 

Coordinate System, obtained from the valid MLS update at transition. Let N be 

the number of waypoints in the initial flight plan. Let P be the number of the 

last interior waypoint passed in the flight. For example, on the initial leg of 

the aircraft trajectory, P = 1; after passing the middle of the first turn, 

P = 2, etc. 

Let C”R(P) be the unit vector to the center of the oncoming turn. The 

lter of the turn is given by distance from the aircraft to the cer 

DTEST = rE (sin 
-1 I & x C’k (P) I) 

where 

and 

4 

rE 
= the radius of the earth. 

(1) 



A 
WR (p+l)OLD = i’R t2)NEW 

WN 

;R(l) = & (M& 

A 
WR Ww)OLD = WR (3)NEW 

Figure 1. Zero Cross Track Construction 
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If DTEST > RT(P) + D (ZTC) we execute the- ZTC algorithm below. 

The value of D (ZTC) is preset in bulk storage and is usually taken to be 

8 RT(P). If the test fails we execute the continued track algorithm (CT) with 

a message that the ZTC test has failed. 

We set 

x (1) = tan-’ (- iE (2) / $ (3) ) n/180 

6 (1) = sin-l ( iE (1) ) 7r/180 

and 

h (1) = RE - rE I I 

~~(1) = current desired airspeed in knots 

To fill out the remainder of the path input block data, we set 

x (I) = x (P + I) 

6 (I) = 6 (P + I) 

h (I) = h (P + I) 
I= l,N-P 

VD(I) = VD (P + I) 

if N-P+1 2 3 

RT (I) = RT (P + I-l) I = 1 , N - P - 1 

(2b) 

PC) 

We note that while the oncoming interior waypoint, WR (P + 1) , is retained, 

the unit vector to the center of the oncoming turn, CAR (P) , is moved. Figure 1 

illustrates a typical ZCT path construction. The logic for constructing the 

altered path, and the guidance parameter computation is identical to that used 

in generating the original path and is contained in Reference 1. The total number 

of waypoints in the reconstructed path is J = N - P + 1. 
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C. Tangent Path (TP) 

The algorithm for the tangent path construction assigns the initial 

waypoint, WAR (1) , to the unit position vector of the aircraft , W-E , and 

chooses the second waypoint, WR (2) so that the great circle determined by the 

plane containing WE and WR (2) shall be tangent to the existing oncoming 

turn circle with the unit center vector, CAR (P) , and turn radius , RT (P). We 

proceed to determine the new first interior waypoint, WR (2) . 

Let & be the unit normal to the great circle plane containing the 

present position, WE , and the center of the circle, CAR (P). 

A M = Rj x Cj (P) 

IRE x CR (P)( 

The unit normal , I& (l), to the great circle plane containing RE and the 

oncoming unit tangent vector , ;I (1) , may be obtained by rotating , i , 
A 

about RE through an unknown angle , 0. We have 

Lf& (1) = COB U & + sign (A$) sin Q & x & 

(3) 

(4) 

To determine the angle u we resort to spherical trigonometry (see 

Fig. 2) 

sin (RTPvrE) 
SinQ = 

l&~&t(P) 1 

(5) 

cosg = J 1-sin20 

7 



A 
PI(l) 

sin cy = sin 
RTtW, 

rE 
; 

sin /!3 = l;E x ;R(P) 1 

Y ;R(l) = ;E 

Positive A$ 

WR(l) = ;E 

Negative A $I 

Figure 2. Tangent Path Construction 



To determine the new first interior waypoint , WR (2) , we note that 

it is determined by the cross product of the incoming and outgoing normals. 

Since the remainder of the path past the oncoming turn is left unaltered, we 

have 

and 

iiN (2) = ;N (P + 1) 

WR (2) = 
;;iN (1) x ;N (2) 

-sign (A$) A 
1WN (l)xWN(2)1 

To obtain the block data information for the tangent path we set 

x (1) = tan-’ ( - RE (2) / RE (3) ) n/180 

6 (1) = sin-’ (;tE (1) ) n/180 

h tl) = 1 s 1 - rE 

~~(1) = current desired airspeed in knots 

Let 

then, for the second waypoint, we have 

X (2) = tan-l ( - i (2) / i (3) ) 

6 (2) = sin-l (i (1) ) 

h (2) = h (P + 1) 

v=(2) = VD (P + 1) 

(6) 

(7) 

(W 



I,,,.,. I I- .I, - - . . . . . _.-.. -.- - - 
I 

For the remainder of the block data we set 

x (I) = x (P + I) 

6 (I) = 6 (P + I) 

h (I) = h (P + I) 1=2, N-P 

VD(I) = VD (P + I) 

(8~) 

and if N - P + 1 2 3 

RT (I) = RT (P + I-l) 1=1, N-P-1 (84 

As in the case of the Zero Cross Track method, the Tangent Path Tran- 

sition Technique eliminates the cross track error and the command altitude error, 

but does not eliminate the track angle error. Consequently, if the transition takes 

place too close to the oncoming turn circle, a large track angle error is produced 

along the new path and large turn commands may result. Here again, it is recom- 

mended to defer using the TP method if the distance to the center of the oncoming 

turn is too close. 

Let PTEST be computed as 

PTEST = rE (sin 
-1 

If DTEST > RT (P) + D (TP) we execute the TP procedure. Otherwise, we 

call for the continued track method (CT) and display a message to that effect to 

the pilot. 

10 



D. Continued Track (CT) 

The Continued Track transition method accepts the MLS position and 

velocity vectors, thus eliminating the need for corrections at transition. More- 

over it is capable of being executed along a great circle (straight line path) or in 

a turn and thus provides a truly smooth transition. 

Let RE be the aircraft position vector in the earth fixed inertial 
. 

coordinate system, and RE be the aircraft velocity vector in the same system. 

Then, the unit normal to the first aircraft reconstructed path is given by 

+-N (1) = RExRE 
]RExREI 

(9) 

At this juncture it is necessary to introduce the ability of utilizing either 

an interior corner or a center of turn as an input waypoint in the initial block 

data. This is done in order to accommodate turns of greater than 180 degrees. 

The addition is introduced in Appendix I of this report. An array, IC (I) , is 

created in block data. For each waypoint we choose either IC (I) = 0, or 

IC (I) = 1. 

If IC (I) = 0 , 

then X (I) , 6 (I) correspond to a regular interior waypoint. 

If IC (I) = 1 , 

(lOa) 

(lob) 

then X (I) , 6 (I) correspond to a center of turn waypoint. 

In addition, we must assign to each turn a SIGN (I), indicating whether 

the turn is in the direction of increasing azimuth with respect to north, 

SIGN (I) = l., or decreasing, SIGN (I) = -1. 

11 



For the first waypoint, following a valid MIS update, we set 

IC (1) = 0 

A (1) = tan -’ (- iE (2)/ iE (3)) r/180 

6 (1) = sin-’ (RE (1) ) n/180 

h (1) = IREI-rE 

~~(1) = current desired airspeed in knots 

SIGN (1) = SIGN (P) 

(11) 

1. CT on a straight line segment - 

If the aircraft is not in a turn, we determine the second interior 

way point using Eq. (2), 

A 

WR (2) = 
;;rN (1) x ;N (P+l) 

- SIGN (P) A 
1 WN (1) x WN (P+l) t 

Let a be the sign of the vector dot product of WR (2) and ;R (P), the 

turn center of the original oncoming turn. 

a = sign (WR (2) l ;R (P) ) 

Then, the new unit vector to the center of the first oncoming turn, ;R (l), is 

given by 

(12) 

(13) 

;R (1) = J 
sin A 

0, 1 - 
2 sin2 A 

l+ WN(1) l &N (P+l) 
WR (2) - 

1+ iiN l ;NN(P+l) 
(;NN(l)+i~(p+l)) 

(14a) 

where sin A = sin (RT(P) / rE ) (14b) 

12 



In addition, set 

h (2) = h (P) 

‘$41’ = RTtW 

IL =P 

2. CT in turn -._-- 

If transition takes place during a turn we must set the 

trigger, ITURN , to inform block data that the first straight line segment should 

be eliminated in generating the new path. 

The second item to be determined is whether we are in the first half of 

the turn or the second. If we are in the first half of the turn, it is a relatively 

short distance to the middle of the turn. Since we have accepted the existing 

aircraft altitude as the desired altitude, we must alter the desired altitude at 

the middle of the turn to avoid an abrupt change in glide slope over the short 

distance remaining. This is accomplished in the path generation logic (see 

Appendix I). If we are in the second half of the turn there is little danger of an 

abrupt change in desired glide slope since the next altitude is defined at the 

middle of the next turn, which is usually some distance away. 

The third item to be determined is whether we are in the final turn prior 

to landing. It is necessary to know this for the following reason. If we are in a 

turn we know that the unit position vector, RE , lies on the turn circle and we 

know the unit normal, WN (1). Together with the radius of the turn, RT (l), 

and the SIGN (P), these items completely determine the unit vector to the center 

of the turn, GR (1). The location of the center, ;R (l), and the unit vector to 

the center of the next turn &R (2), together with their radii, RT(l) and _RT(2), 

and their SIGN’s, completely determine the outgoing unit normal vector, WN(2). 

However, on the last leg, leading to touchdown, we are not free to choose the 

outgoing unit normal, &N (2), since this is determined by the heading of the 
A 

runway, $R , and the final waypoint , WR (N). Consequently we must surrender 

13 



a degree-of-freedom to accommodate the final straight line leg. We choose 

to give up the radius of the turn, RT(l). 

The sequence of the choic.es proceeds as follows: 

If we are in a turn, we set, 

ITURN = 1 

Otherwise, ITURN is defaulted to 0. 

If we are in the turn and it is the first half of the turn, then we set 

IMOD = 2 

GRX = GRAD (P) 

Otherwise, these are defaulted to be IMOD = 1 and GRX = 0. 

The path generation logic will use these triggers to eliminate the first straight 

line segment, and to determine the altitude at the middle of the turn to provide 

for a continuous glide slope. 

In addition we set 

M = N-P+1 

IL = P 

If we are in a turn and in the second half of the turn, then we set 

IMOD = 0 

M = N-P+2 

IL = P-l 

(16a) 

Wd) 

PW 

(16 f) 

ww 

ww 
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Now we check if we are on the last turn. If M = 3, we must determine 

the radius of the turn. 

For this case we have 

Al = ;N (N-l) l & 

A2 = 1. - ;N (1) l ;N (N-l) 

-AAlL 
sinA =dm 

RT(l) = rE sin 
-1 

(sin A) 

If M > 3 we set 

RTW = RT OL) 

For all the above cases we proceed to determine the unit center of the new 

turn. Let 

sinA = r 
E sin-l ( R.$VrE) 

2 i 
cos A = (1. - (sin A) ) 

;R (1) = cos A ;1E - sign (AI/J) sin A ;N (1) 

3. CT Block Data for all cases 

Having determined the unit center of the turn for all three 

CT cases, we set 

f; = ;R (1) 

IC (2) = 1 

A (2) = m-1 (-1 (2) / ii (3) ) n/180 

(17a) 

W) 

(17c) 

(17d) 

We) 

P3a) 

(18”) 

(19) 

w-v 

(214 

@lb) 
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6 (2) = sin-' (;\ (1) ) fr/180 

h(2) = h (P+l) 

VD 
= VD (P+l) 
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II. SIMULATION STUDY OF THE COMPARATIVE PATH RECONSTRUCTION 
METHODS 

A. Description of the Simulation Test Data 

This section contains the plots of computer runs carried out using 

the FILCOMP program. Each run consists of 3 sets of plots. 

The first in each series contains a plot of the aircraft ground track illus- 

trating the original and reconstructed paths. The original waypoint data point 

is indicated by a point enclosed by a diamond. The reconstructed waypoint is 

marked by a point contained in a circle. The boundary limits of the MLS 

azimuth antenna are illustrated by a dashed line emanating from the azimuth 

antenna. The boundary limits of the elevation antenna are illustrated by a 

dashed line emanating from the antenna site to the right of the start of the run- 

way. The initial waypoint at the start of each trajectory is shown by a point 

enclosed in a diamond. Transition occurs immediately after entering the 

elevation coverage. If the center of a turn is relocated during path recon- 

struction, both the original and new center are shown. If the tangent path 

method is used, the center of the turn is not altered, but the vertex corner may 

be altered, and both the original and the reconstructed vertex are shown. Per- 

tinent data requiring winds, Path Construction Algorithm used, navigation filter 

type, etc., are printed on this page. Finally, to illustrate the remaining distance 

to touchdown, each plot contains either the original path design approach distance 

in nautical units, or the reconstructed final distance. 

The second page in each series contains 7 plots of pertinent data as a 

function of time. These consist of the following: 

1) Glide path deviation in meters for both the true deviation and the 

estimated deviation for the particular navigation filter in use in the guidance 

loop for aircraft control. 

2) Aircraft pitch angle in degrees for the true pitch, the measured 

pitch output of the IMU (used by the complementary filter) and the estimated 

pitch corrected for the estimated gyro drift bias (used in the Kabnan filters). 
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3) Aircraft altitude rate, measured in meters per second, for 

both the true rate of climb and the estimated rate obtained by the particular 

navigation filter supplying the control equations. 

4), 5), 6) Errors in the estimate of the forward, lateral and 

vertical coordinates of the aircraft measured in the flat earth runway coor- 

dinates of the aircraft measured in the flat earth runway coordinate system 

for both the complementary and Kalman filters, measured in meters. 

7) Error in the estimate of the forward velocity component 

iR 
in the runway coordinate system, measured in meters per second for 

both the complementary and the Kalman filters. 

The last of the figures in each series of three contain 8 plots of data as 

function of time. These consist of the following: 

1) Cross track error, measured in meters, for both the true 

CRTE and the estimated CRTE obtained by the navigation filter used to 

supply the guidance equations. 

2) Track angle error, converted from degrees to the time rate of 

change of cross track error by multiplying by the ground speed. Both the true 

track angle error and the estimated track angle error supplying the guidance 

equations are shown, measured in meters per second. 

3) Aircraft roll angle, measured in degrees, for the true roll angle, 

the measured roll angle supplying the complementary filter, and the measured 

roll angle corrected for the gyro drift bias (used in the Kahnan filter estimate of 

the aircraft roll angle). 

4) Error in the estimate of the north component of the wind, in meters 

per second, for both the Kalman and complementary filters. 

5) Error in the estimate of the west component of the wind, in meters 

per second, for both the Kalman and complementary filters. 

6) Difference between the true desired airspeed and the true airspeed. 

A second plot also shows the difference between the true ground speed and the 

true airspeed. The curves are mirror images of one another in the event the 

winds are zero, and differ in the presence of winds. 
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7) Error in the estimate of the lateral velocity 2 
2R ’ 

in the 

runway coordinate system, in meters per second, for both the Kalman and 

the complementary filter. 

8) Error in the estimate of the vertical velocity, i3R , in the 

runway coordinate system, in meters per second, for both the Kalman and 

the complementary filter. 

B. Discussion of the Results 

Case 1 illustrates a successful application of the tangent path tech- 

nique. In this case transition occurs sufficiently far away from the oncoming 

turn circle so that the uncorrected error in track angle does not cause an ex- 

cessive roll. Fig. 3(a) shows the ground track for this case. Transition occurs 

40 seconds after the start of the simulation immediately after the aircraft enters 

the elevation coverage. The large sweep of 75’ permits the aircraft to update 

the path on the straight line portion fully 15 seconds prior to the start of the turn 

at a distance of over 1100 meters. The maximum roll angle needed to erase the 

uncorrected track angle error is shown in Plot 3 of Fig. 3(c) and is seen to be 

approximately 3 O. This occurs sufficiently far away from the required turn so 

that the aircraft has time to level off before executing the turn. 

Case 2 illustrates a less successful application of the tangent path recon- 

struction technique. In this case (Fig. 4(a)), transition occurs after the com- 

pletion of the first turn and prior to the start of the second turn. The aircraft 

guidance is presented with a large track angle error (see Plot 2, Fig. 4 (c)). A 

roll angle of 10 O is required to regain the heading alignment. (See Plot 3, 

Fig. 4 (c)). Since this follows the exit of the previous turn, an undesirable 

sequence of turns result. 

Case 3 illustrates the advantage of the continued track path construction 

over the tangent path method. In this case, the same transition geometry 

Fig. 5 (a)) results in a smooth path without extra turns. The center of the on- 

coming circle is only slightly altered to accommodate the elimination of the error 

in cross track and track angle. Plot 1 and 3 of Fig. 5(c) shows no cross track 
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error or roll angle following the transition time at 110 seconds. The superiority 

of the continued track over the tangent path reconstruction method is clearly 

illustrated. 

Case 4 is a further illustration of the undesirability of utilizing the tangent 

path when the aircraft is too close to the oncoming turn circle. In this case (see 

Fig. 6(a) ) the elevation coverage limits are set at 35’. The change in heading 

required to produce a path tangent to the oncoming circle produces an error in 

cross track rate of over 20 m/set (see Plot 2, Fig. 6 (c) ) and a roll angle of 20’ 

(see Plot 3, Fig. 6 (c)). This is immediately followed by the onset of the required 

turn, which causes an undesirable series of turns. 

Case 5 shows the identical transition history with the continued track algor- 

ithm. Once again, with a slight adjustment of the center of the oncoming turn, the 

cross track and these track angle errors are eliminated and no extra maneuvering 

occurs. Fig. 7(a) shows the smooth ground track. The altered center of the 

second turn is indicated by the small circle in the center of the turn. It should be 

noted that the last outgoing tangent point, at the intersection of the second circle 

and the runway track, has been moved forward somewhat, but that the remaining 

ground distance to touchdown is still 1.80 nautical miles; long enough to permit 

a normal landing. 

Cases 6, 7, 8, 9, and 10 illustrate the adaptability and applicability of the 

continued track reconstruction technique at every point along the approach flight path. 

my varying the boundary limits of the elevation coverage it is possible to force 

the transition point to occur at a straight line segment on the first half or second 

half of a turn, and either the first or the final approach turn. Each case is handled 

successfully, without requiring any extra roll to recapture the original path. 

Case 6, Figs. 8(a), 8(b), and 8 (c) illustrate the application of the continued 

path with transition occurring on the straight line segment immediately prior to 

the onset of the first turn. Plots 2 and 3 of Fig. 8(c), show little cross track 

velocity after transition and no roll angle required until the start of the reconstructed 

first turn. 

Case 7, Figs. 9 (a), 9 (b),and 9 (c) illustrate the application of the continued 

track technique when transition occurs on the first half of the first turn circle. 
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Once again, examination of Plots 2 and 3 of Fig. 9 (c) shows the elimination of the 

cross track velocity in the middle of the required turn and no extra roll angle 

is called for whatsoever. It should be noted that a small change in the relocation 

of the center of the second turn is required, resulting in a small movement (. 08 

nautical miles) of the outgoing tangent point along the runway extension segment. 

(See Fig. 9(a)). 

Case 8, illustrates the same smooth continued path reconstruction when 

transition occurs on the second half of the first turn. (See Figs. 10(a), 10(b), and 

10(c) )* 

Case 9, Figs.ll(a), 11(b), andll(c) illustrate the continued path reconstruc- 

tion when transition occurs on the first half of the last turn. The only significant 

feature here is the need to change the radius of the last turn and the movement of 

the tangent to the runway centerline to a point 1.79 nautical miles from touchdown. 

Case 10 illustrates the most critical of all transitions. This one takes place 

on the second half of the final turn. A smooth transition occurs again. The only 

significant problem is the shortening of the final approach segment, from the 

tangent point to touchdown from its initial value of 2 nautical miles to 1.47 nautical 

miles. There appears to be no reason why a successful smooth letdown cannot 

be executed in this remaining distance. Plot 6, Fig. 12 (b) illustrates the readjust- 

ment in the estimate of vertical height at transition. Plot 2, Fig. 12(b), illustrates 

the smooth pitch profile. It is interesting to examine Plot 2, Fig. 12 (c). The roll 

angle following transition is lowered from 15 ’ to 10 o to accommodate the increase 

in the altered turn radius. 

Cases 11 and 12 are illustrations of the capability of path construction for 

turns greater than 180°, and the ability of the continued path to reconstruct a path 

greater than 180° on the first and second half of a final turn. 

Case 11, Fig. ‘s 13(a), 13 (b) , and 13(c) represent an approach path with a 

220’ turn into the final runway segment. Transition takes place shortly before 

the aircraft has entered the first half of the turn. Fig. 13(a) shows the recon- 

struction of the turn circle, including the determination of the new turn radius. 

Once again, the outgoing tangency point with the final runway segment has been 
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altered from 2.0 nautical miles to 1.67 nautical miles. A successful landing is 

accomplished without undue maneuvering. 

Case 12, .Figs. 14(a), 14(b), and 14(c) represent the same 220’ turn 

approach with the transition occurring on the second half of the turn. Once 

again, the change in turn radius at transition calls for a somewhat smaller roll 

angle as seen in Plot 3, Fig. 14(a). Examination of Plot 3, Fig. 14(b) illustrates 

a slight oscillation of the vertical altitude rate following the transition time. This 

oscillation is inherent in the pitch channel due to coupling between the engine 

thrust and the error in desired airspeed. 
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TABLE I 

VORTAC AND MLS STATION COORDINATES 

VORTAC STATION COORDINATES 

STATION LONGITUDE 40.40316 

STATION LATITUDE -27.164894 

STATION ALTITUDE 45.72 m 

MLS STATION COORDINATES 

AZIMUTH & DME LONGITUDE 40.25 

AZIMUTH & DME LATITUDE -77.025 

AZIMUTH & DME ALTITUDE 0. 

ELEVATION DISTANCE FROM RUNWAY COORDINATE FRAME ORIGIN 

XEL(l) = lOOO., XEL(2) = 254.78, XEL(3) = .47 

RUNWAY HEADING = 30 ’ 
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N=4 

I 

TABLE II 

INPUT DATA FOR WAYPOINT CONSTRUCTION 

CASES 1 THROUGH 10 

m S(I) 
DEG DEG 

h(I) 
m 

v m 
7 m set 

IC 

1 40.29759451 -77.14538380 994.654 74.594 0 

2 40.23788553 -77.13148869 640.811 69.450 0 

3 40.20574384 -77.05845224 290.748 64.305 0 

4 40.25237254 -77.02320521 0. 64.305 0 
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Azbound = 70’ 
Elbound = 75’ 
Tangent Path Reconstruction 
Complementary Filter 

Final Distance = 2.00 Nautical Miles 

Aircraft Ground Track 

Fig. 3(a) CASE 1 
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0 True 
q Estimate 

m Noisy Pitch 

0 Pitch Est 

Q True 
0 Selected Est 

0 Kahn Est 
0 Comp Est 

“1 r 1 ‘1” 

0 Kalm Est 
0 Camp Est 

0 Kahn Est 
0 Camp Est 

f 
p 

0 Kahn Est 
0 Comp Est 

Fig. 3(b) CASE 1 
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0 True 
0 Selected Est 

OTrue - 
a Selected Est 

0 Kalman 
Cl Cow 

6 
0 V&Airspeed 
0 True Airspeed Err 

0 Kahn Est 
0 Camp Est 

0 Kalrn Est 
0 Comp Est 

Fig. 3 (c) CASE 1 
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Azbound = 700 
Elbound = 45’ 
Tangent Path Reconstruction 
Complementary Filter 

Final Distance = 2.00 Nautical Miles 

Aircraft Ground Track 

28 
Fig. 4(a) CASE 2 



fig. 403) CASE 2 
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0 True 
0 Selected Est 

Q True 
c] Selected Est 

0 Noisy 

0 Kalman 
0 BmP 

0 Kalman 
Cl ComP 

0 VG-Airspeed 
0 True Airspeed Err 

0 Kahn Est 
0 Comp Est 

0 Kahn Est 
0 Comp Est 

Fig. 4(c) CASE 2 
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Azbound = 70’ 
Elbound = 45’ 
Continued Path Reconstruction 
Complementary Filter 

. 

Final Distance = 1.78 Nautical Miles 

A ircraft Ground Track 

Fig. 5(a) CASE 3 
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I 

0 True 
I 
F 0 Estimate 

---- 0 Kahn Est 
a- 0 Camp Est 

F 
, , 2yoT , ,.y 

0 Kahn Est 
0 Comp Est 

Fig. 5(b) CASE 3 
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0 True 
c] Selected Est 

0 True 
0 Noisy 
0 Estimate 

, IT 1 , 

0 Kalman 
Cl CQmp 

0 Kalman 
q ComP 

0 Kalm Est 
0 Comp Est 

0 Kahn Est 
0 Comp Est 

Fig. 5(q) CASE 8 
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Azbound = 20’ 
Elbound = 35’ 
Tangent Path Reconstruction 
Complementary Filter 

Final Distance = 2.00 Nautical Miles 

Aircraft Ground Track 

Fig. 6(a) CASE 4 
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0 True 
0 Estimate 

(J True 
0 Selected Est 

0 Kahn Est 
0 Comp Est 

0 Kalm Est 
0 Comp Est 

fig. 6(b) CASE 4 

35 



c] Selected 

.L 0 Kalman 
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0 Camp 

-/ --- 

----o -- 0 VG-Airspeed 
0 True Airspeed 

‘F 
0 Kahn Est 
0 Camp Est 

0 Kalm Est 
f-J Comp Es, t 

Err 
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Azbound = 20’ 
Elbound - 35’ 
Continued Track Reconstruction 
Complementary Filter 

Final Distance = 1.80 Nautical Miles 

Aircraft Ground Track 

Fig. 7(a) CASE 5 
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0 True 
0 Estimate 

0 True 
0 Selected Est 

0 Kahn Est 
0 Comp Est 

0 Kalm Est 
0 Comp Est 

Fig. 7(b) CASE 5 
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0 True 
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0 True 
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0 Estimate 

0 C-P 

0 Kalman 
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0 VG-Airspeed 
0 True Airspeed 

0 Kahn Est 
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0 Kalm Est 
0 Comp Est 

Err 

Fig. 7(c) CASE 5 
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Azbound - 70’ Azbound - 70’ 
Elbound = 65’ Elbound = 65’ 
Continued Track Continued Track Reconstruction 
Complementary Complementary Filter 

Final Distance = 2.00 Nautical Miles 

Aircraft Ground Track 

Fig. 8(a) CASE 6 
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0 True 
0 Estimate 

0 Pitch 
0 Noisy Pitch 

0 Pitch Est 

0 True 
0 Selected Est 

Fig. 8(b) CASE 6 
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Azbound - 70 0 

Elbound = 55’ 
Continued Track Reconstruction’ 
Complementary Filter 

Final Distance = 1.92 Nautical Miles 

Aircraft Ground Track 

Fig. 9(a) CASE 7 
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Fig. 9(b) CASE 7 
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0 True 
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Fig. 9(c) CASE 7 
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Azbound - 70’ 
Elbound = 50’ 
Continued Track Reconstruction 
Complementary Filter 

Final Distance = 1.92 Nautical Miles 

A ircraft Ground Track 

Fig. 10(a) CASE 8 
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Fig. 10(b) CASE 8 
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0 Kalm Est 
0 Comp Est 
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Azbound = 70° 
Elbound = 20’ 
Continued Track Reconstruction 
Complementary Filter 

Final Distance = 1.72 Nautical Miles 

Aircraft Ground Track 

Fig. 11(a) CASE 9 
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0 Noisy Pitch 

0 Kahn Est 
0 Comp Est 
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0 Comp Est 

‘F 

Fig. ll@) CASE 9 
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Fig. 11(c) CASE 9 51 



Azbound - 70’ 
Elbound = 8’ 
Continued Track Reconstruction 
Complementary Filter 

Final Distance = 1.47 Nautical Miles 

Aircraft Ground Track 

Fig. 12(a) CASE 10 
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Fig. 12(b) CASE 10 
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Fig. 12 (c) CASE 10 
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TABLE III 

INPUT DATA FOR WAYPOINT CONSTRUCTION 

CASE 11 & 12 

N=3 

I X(I) w> h(I) vDfl) 
DEG DEG m m/set 

1 -77.0268144 40.26663483 897.59 74.594 0 

2 -77.0683161 40.23380727 452.04 69.450 1 

3 -77.1453838 40.29759451 0. 64.305 0 

IC 
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Azbound = 70’ 
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Final Distance = 1.67 Nautical Miles 

Aircraft Ground Track 

Fig. 13(a) CASE 11 
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0 True 
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(-J Kahn Est 
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Q Comp Est 

Fig. 13(b) CASE 11 
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Fig. 13(c) CASE 11 
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Azbound = 70’ 
Elbound = 30’ 
Continued Track Reconstruction 
Complementary Filter 

Final Distance = 1.75 Nautical Miles 

A ircraft G round Track 

Fig. 14(a) CASE 12 

59 



0 True 
0 Estimate 

110 
I’,’ 

:: 
0 

I ,,;,I I1 

Pitch 
Noisy 
Pitch 

mo 

I 

Pitch 
Est 

0 Kalm Est 
0 Comp Est 

Fig. 14(b) CASE 12 
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Fig. 14(c) CASE 12 
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APPENDIX I 

Uniform Waypoint Path Construction 

This appendix derives the equations for constructing a desired path, 

consisting of straight lines (great circles) connected by arcs of circles of a 

fixed radius. The resulting continuous path is located on the surface of a 

rotating, spherical earth. The connecting turn circles may be less than or 

greater than 180’ in arc length, and are limited only to be less than 360’. The 

required input data consist of the latitude and longitude of a sequence of way- 

points, the radius of each turn circle and the sign of the turn, the desired 

altitude and airspeed at each waypoint, an integer code designating whether 

each waypoint is regular waypoint, or the center of the turn, an integer 

variable indicating whether the initial point is the start of a straight line seg- 

ment or on a turn, and the integer total number of waypoints. Given N way- 

points there are only N-2 turns. 

A. Initial Data 

Let N be the number of waypoints (N must be at least three). At 

each waypoint we must supply the following: 

For I = 1, N 

X (I) = longitude in degrees 

6 (I) = latitude in degrees 

h (I) = height above the sphere in meters 

~~(1) = desired airspeed in meters/set 

IC (I) = 0 if waypoint is regular 

1 if waypoint is center of turn 

For I = 1, N-2 

RT(I) = radius of turn 

SNDP (I) = sign of turn 

1 for clockwise, -1 for counter clockwise 

.(2.1) 

(2.2) 
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For the first waypoint 

ITURN = 0 means the initialization starts on a straight 
line segment P-3) 

ITURN = 1 means the initialization starts in a turn. 
This is used only on reconstruction, if 
the update is to take place on a turn. 

B. Vector Representation of Each Way-point 

The vector representation of each waypoint is in the earth fixed 

system. Converting the angle data into radians, the waypoint unit vectors 

are given by 

For I = 1, N 

WR(I) = P-4) 

C. The Unit Normal Vectors 

Between each consecutive pair of way-points construct a plane. 

If IC (I) = 0 and IC (I+l) = 0, then the plane is the plane containing the two 

vectors, and the unit normal to that plane is given by 

&(I) = WR (I) x WR (I+l) 

1 WR (I) x WR (I+l) 1 
(2.5) 

If IC (I) = 0, and IC (I+l) = 1, then we are going from a normal point to a 

circle, and we construct the plane which contains the first waypoint and is 

tangent to turn circle of the given radius, RT. Since there are two tangent 

planes from 

In a manner 

waypoint to 

a point to a circle, the sign of the turn removes the ambiguity. 

simular to Eq. (2.5) we first form the plane from the regular 

the center of the turn. The unit normal to that plane is given by 

GN = WR (I) x WR (I+l) 
* 

1 WR (I) x WR (I+l)l 
(2.6) 
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To obtain the unit normal to the plane tangent to the turn, we must rotate 

the unit normal , ;N , about the waypoint vector WN (I) through the angle, A 
A , formed by the plane between WR (I) and WR (I+l), and the plane between 

WR (I) and the tangent waypoint at the circle, ;I (21 - l), (see Fig. 11). 

To obtain the angle A , we have from spherical trigonometry 

sinR = WR (I) x WR (I+l) 

cos /3 = WR (I) ’ WR (I+l) 

sin01 = sin (RT(I) / rE 

cos Q! = d- 1 - sin2 cy 

(2.7a) 

(2. %) 

(2.7c) 

If ITURN = 1, and we are in the turn, then WR (I) is iI (21-l), and 

we set 

sin fi = sin Q 

cos j? = cos Q! 

cos A = 0 

sin A = 1 

Otherwise we have 

sinA = sin&os~ 

cos A = J- 1 - sin2 A 

The desired equation for WN (I) is given by 

(2.7d) 

(2.7e) 

&J(I) = cosAGN+sinAsign(L!&(I))WR(I) x ;N P-8) 

If IC (I) = 1 and IC (I+l) = 0, then we require the plane containing 

the outgoing tangent point, PI (21) and WR (I+l). Again we form the plane 
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sign (A#) = +1 

a#) = -1 

UNIT NORMAL K(I) = 0, Ic(I+l) = 1 

Figure 11 
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sign (A$) = +I 

sign (A@) = 

UNIT NORMAL E(I) = 1, IC (I+l) = 0 

Figure I2 
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A A * 

containing WR (I) and WR (I+l), construct the unit normal XN and rotate 

;N about WR (I+l), through the negative of the angle A. (See Fig. 12). 

For this case we retain Eq. (2.6), Eq. ‘s (2.7a) and (2.7b). However, 

sin 0 = sin <+ (I-l)/rE) (2.9a) 

cos dy = J 1 - sin2 o! (2.9b) 

sin 01 sin A = - - 
cos /3 

(2. SC) 

cos A = J 1-sin2A (2.9d) 

and the desired unit normal is given by 

&I (I) = cos A );N + sin A sign ( A$ (I-l) ) WR (I+l) x );N (2.10) 

The reason for using RT (I-l), and All, (I-l) is that we are on the 

outgoing leg and the turn circle we refer to is behind us not ahead. 

One more precaution is required. In the event N is 3 and we have 

chosen to construct a path starting in the turn, then we are no longer free to 

choose a radius because the outgoing unit normal must be parallel to the run- 

way unit normal. Consequently, if IC (I) = 1, and IC (I+l) = 0, and N = 3, 

we are compelled to compute the outgoing normal to be parallel to the runway 

normal and we must compute the radius of the turn to be consistent with this 

outgoing unit normal. 

For this case, if IC (I) = 1 and IC (N) = 0, the unit normal to the 

runway is given by 

& = cos Ic, 
A 

RN 
- sin GR WR(-N) x ; (2.11) 

where 

and 

f cos 6 (N) 

; = 

t 

sin 6 (N) sin X (N) 

-sin 6 (N) cos X (N) 

QR 
is the runway azimuth in radians 

(2. lla) 
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If IC (I) = 1 and IC (I+l) = 1, then the required path must be a great 

circle tangent to two circles. To obtain the unit normal to this common plane 

we require RT(I) , RT (I+l), kR (I) , kR (I+l), sign (,$,!I (I) ) and sign (AIc,(I+l). 

The unit normal is given by 

I& (I) = al kR (I+l) + a2 &R (I) + a3 GR (I) x &R (I+l) 

where 

al = (cos /3 SinQ - 
1 sin a2, / sin2 8 

a2 = (cos 8 sin 4c - 
2 

sin CyI) / sin2 j3 

a3 = @OS a1 cos a2 siny ) / sin2 p 

sin fi = ;R (I) x GR (I+l) 
1 

cos 8 = (1 - sin2 p)’ 

Silla! 1 = sin (RT(I) / rE) 

SillQ 2 = sin (RT(I+l) / rE) 

siny = [;I (21) x ;I (21+1) 1 

(2.12) 

(2.12a) 

(2.12b) 

cos y = (cos /3 - sin al sin a2) / (cos 4 cos 3) 
6 

siny = (l- cos2 y) 

See Fig. (13). 

This exhausts all the possible unit normals for any pair of consecutive way 

points. 

D. Center of Turn Unit Vector 

(2.12c) 

The unit vector to the center of turn is defined in one of two ways. 

Either , the center is itself a waypoint, or else it may be computed given the 

incoming and outgoing unit normals, & (I), and k (I+l), the radius of the 

turn, I+ (I), and the sign of the turn, sign ( A# (I) ). 
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I 

sign (A$(I) ) = 1 

sign &b(I) = 1 

sin a! PI(BI+l) 

sin b 

sign A#(I+l) = -1 

UNIT NORMAL K(I) = 1, IC(I+l) = 1 

Figure 13. 

69 



If IC (I+l) = 1, we have 

;R (I) = WR (I+l) (2.13) 

If IC (I+l) = 0, we have 

GR (I) = al WR (I+l) + a2 &N (I) + &N (I+l) ) (2.14) 

where 

2 sin2 a 
i 

al 
= (1. - 

1. + W-N (I) . WN (I+l) 
) 

(2.14a) 

a2 = - 
sin dL! sign (A@ (I) ) 

1. + WN (I) * WN (I+l) 

sin o! = sin (RT(I)/rE 

E. Turn Angle 

The unit vector to the center of the turn, CR (I), and the incoming normal, 
* e. 

WN (I) determine a plane which contains the unit vector, PI (21-l), which is at 

intersection of start of the turn and the incoming great circle. We define a 
A 

unit vector YN , which lies in the GR (I) , WN (I) plane and which is per- 

pendicula r to 6R (I) . 

sign A ;N = --& i’N (I) + 2 ;R (I) (2.15) 

where 

sin Q! = sin (RT(I) / rE (2.15a) 

We define, the turn angle, A@ (I), or the angle through which we must 
A 

rotate YN , about the unit vector, -CR (I) , in order that the rotated unit 
A 

vector, YN’ , will lie in the plane containing the unit center of the turn, ;R (I), 
A 

and the outgoing normal, WR (I+l). (See Fig. 14). 
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GR(I) 

sign 

Figure 14. Turn Angle &C, (I) 
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GN’ = cos(A$(I)) A-sin(A$)dR(I) x & (2.16) 

We have 

cos (A$(I)) = & l ;N’ = 
&(I) l &I (I+l) - sin2cu 

2 (2.16a) 
cos r.y 

sin ( Ao(I) ) = - iR(I) x GN 
. &, = _ CR(I) x &(I) l &(I+l) 

2 
(2.16b) 

cos cv 

It follows that the turn angle is given by 

A A A 

A@ = tan-l _CR(I) XAmtI) - WN(I+l) 

WN(1) l WN(I+l) - sin2 Q! 
(2.16~) 

It is necessary to use the four quadrant definition of the arc tangent, and since 

the numerical routines that compute this function turn all angles over 180’ into 

their negative complement, it is necessary to test for angles over 180’. 

The recommended test is 

sign (Ati ) tan 
-1 - eR(I) x %N(I) * %N(I+l) 

iN(I) * &(I+l) 

> o 

- sin 
2 -- 

cII 
(2.16d) 

Thus if the product of the sign ( A$) and the tan -l @ti) P roves to be negative, 

we set 

A 11, (I) = tan -’ (A$) + sign (A$) (2 rr) (2.16e) 

F. End of Segment Unit Vector 

The terminal unit vector at end of each great circle, iI (21-l), 

is used in the guidance equations to determine the distance to go to the end of 

the segment . The required unit vector lies in the plane of the center of the turn, 

iR(I) and the incoming normal, GN(I). 
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We have 

where 

;I (21-l) = & ;R(I) + z sign ( AQ(I) ) iiN (2.17) 

sin Q! = sin (RT(I)/rE) 

cos a = (1 - sin2 Q) 
8 

(2.17a) 

In the event that the initial coordinate is on the turn circle, as in the 

case of trajectory reconstruction and ITURN = 1, we have 

k (1) = &t (1) 

The start of the next great circle segment on the outgoing leg is 

given by 

;I (21) = &- &R(I) + g$- sign A@ iN(I+l) 

(2.17b) 

(2.17c) 

G. The Unit Vector Normal to the Turn Circle 

In the turn, the guidance equations require the unit vector normal 

to the turn circle at the end of the middle of the turn, and at the end of the full 

turn. The first unit vector is obtained by rotating GN about CR(I) through 

the angle, A$ (I)/2 . 

GN(2I-1) = al iN(I) + a2 iR(I) + a3 iR(I) x iN(I) 

al 
= cos ( +L) sign t&M) ) 

cos (Y 

= cos ( 
SiIl~ 

a2 $%- cos Q! 

a3 = - sin ( A+) sign (A$(I) ) 
cos Q! 

(2.18) 

(2.18a) 
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Figure 15a 

Incoming End of Segment 

PI(21) 

I-/ 

Figure 15b 

Outgoing End of Segment 

Figure I5c 

Middle of Turn Normal to Circle 
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To obtain the normal to the turn circle at the end of turn, we have 

;N(2I) = k’ = s ;R(I) + sign t NJ(*) ) ;NtI+l) 
cos 01 (2.18b) 

(See Fig. 15) 

H. Altitude and Airspeed Gradients 

To determine the gradients in altitude and airspeed it is necessary 

to obtain the length of the arc segments between the vectors at which the 

altitude and airspeed values are specified. There are three types of segments. 

1) The segment covered by the distance, along the surface of the 

earth, between the initial waypoint, WR(l), and the first incoming tangent, 

iI(l), plus the distance along the turn circle to the middle of the turn, termin- 

ating at GN(l). 

2) All internal segments consisting of the distance along the 

second half of each turn, plus the distance between the outgoing tangent, 

;I (2I) and the next incoming tangent (;I (21+1), (along the surface of the earth) 

plus the first half of the next turn. 

3) The final segment covered by the second half of the last turn 

plus the distance along the surface of the earth from the last tangent 

;I (2 (N-l) ) to the final waypoint WR(N). 

Let the distance along each great circle be DW(1). 

DW(l) = sin -l ( 1 WR(1) x iI(l) 1 ) rE 

Let I = 1, N-3 (N > 3) 

I = 1+1 

DW(J) = sin -’ ( 1 CI(21) x ;I (21+1) 1 ) rE (2.19b) 

(2.19a) 
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The final, DW(N-l), is given by 

DW(N-1) = -’ sin (;I(2 (N-l) ) x OR ) rE 

Let the distance along each half turn be XARC(I), we have 

I = 1, N-2 

XARC(1) = A @(I) 2 K-p (2.19d) 

Let the gradient in altitude be GRAD(I), then 

Let 

Let 

GRAD(l) -= h(2) - h(l) 

DW(l) + XARC(l) 

I = 1, N-3 N>3 

J = I+1 

GRAD(J) = 
h(J+l) - h(J) 

XARC(1) + XARC(J) + DW(J) 

GRAD(N-1) = 
H(N) - h(N-1) 

XARC(N-2) + DW(N-1) 

Let the gradient in airspeed be DVG(1) , then 

DVG(1) = 
vD(2) - VDW 

DW(1) + XARC(l) 

I = 1, N-3 N>3 

J = I+1 

(2.19c) 

(2.19e) 

(2.19f) 

G*lW 

(2.19h) 

DVG(J) = 
vD(J+l) - vD(J) 

XARC(1) + XARC(J) + DW(J) 

DVG(N-1) = 
vDtN) - vDtN-l) 

(See Fig. 16) 
XARC(N-2) + DW(N-1) 
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h(1) p[ h(2) 

DWtl) XARC (1) 

16a. GRADIENT IN ALTITUDE 1ST SEGMENT 

I = 1, N-3 W > 3) 
J = I+1 

h(J) h(J+l) 

XARC(I) DW(J) XARC (J) 

16b. GRADIENT IN ALTITUDE INTERNAL SEGMENT 

h(N-1) 

XARC(N-2) DW(N-1) 

16~. GRADIENT IN ALTITUDE LAST SEGMENT 

Figure 16 
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In the event ITURN = 1 and IMOD = 2, we are initiating the sequence 

in the turn, we set 

DW(l) = 0. (2.19k) 

Furthermore, in order not to cause an abrupt change in desired gradient, 

we set 

h(2) = h(l) + GRX XARC(l) (2.191) 

In this way we insure that 

GRAD(l) = GRX (2.19m) 

In the event ITURN = 1 and IMOD = 0, we are initiating the sequence 

in the turn, however, since we are in the second half of the turn, the next 

waypoint is some distance away and we are in no danger of causing an abrupt 

change in altitude gradient. In this case we set 

h(2) = h(1) 

DW(l) = 0. 

XARC(l) = Ati(1) rE 

(2.19n) 

I. Waypoint Guidance Array 

The initial input contains N waypoints. The final path contains 

3N-4 waypoints. These points subtend 3N-5 segments; N-l of which are 

arcs of great circles and 2(N-2) comprise N-2 pairs of half turns. Each 

segment contains guidance data whichare constant over that segment. These 

data are conveniently arranged in 3N-5 guidance arrays which are computed 

initially at the beginning of each flight and called up sequentially, as required, 
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at the start of each segment. The .elements for each of the 3N-5 segments are 

listed below for both the great circle arcs and the half turns. 

Let II go from 1 to 3N-5 

J = Integer part of II/3 + 1 

K= 2J - 1 

If MODULO (II,3) = 2 

If MODULO (II,3) = 0 

Array for great circles: 

then L = J 

then L = J-l 

WP(1) = ~N(J, 1) 

WP(2) = $WJ, 21 
WP(3) = WN(J, 3) 

WP(4) = J&K, 1) 

WP(5) = P;(K, 2) 

WP(6) = &K, 3) 

If II = 3N-5 

f WP(4) = 

WP(5) = c WP(6) = 

WP(7) = 

WP(8) = 

WP(9) = 

WP(10) = 

WP(11) = 

WP(12) = 

WP(13) = 

WP(14) = 

sign (A$ (J) ) 
CR(J, 1) 

;R(J, 2) 

GR(J, 3) 

DW(J) 
%<J> 
0. 

sin (tan-’ (GRAD(J) ) ) 

(2.20) 

(2.20a) 

(2.2ob) 
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(2.2Oc) 

If II > 1, but < 3N-5 

HEND = HEND + GRAD(J) (rEsin 
-1 

&I(ZJ-2) x ;I(2J-1)1 ) ) 
(2.20d) 

VEND + VEND + DVD(J) (rEsin 
-1 

&(2J-2) x &2J-14 ) ) 

If II = 3N-5 

WP(15) = HEND 

WP(16) = GRAD(J) 

WP(17) = VEND 

WP(18) = DVD(J) 

WP(19) = J 

WP(20) = IA$cJ,/2 1 

ARRAY FOR HALF TURNS 

If MODULO (II,3) = 2, then L = J 

WP(1) = ;N(2L-1,l) 

WP(2) = &N(2L-1,2) 

WP(3) = ;N(2L-1,3) 

If MODULO (II,3) = 0, then L = J-l 

WP(1) = ;N(2L, 1) 

WP(2) = ;N(2L, 2) 

WP(3) = ;N(2L, 3) 

(2.20e) 

(2.2Of) 

(2.21a) 

(2.21b) 
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wlw 
WW5) 
WW) 
WP(7) 

WWV 

wp (9) 
WP(10) 

WP(11) 

WP(12) 

WP(13) 

WP(14) 

0 

0 

0 

sign t&b(L) ) 

CRtL 1) 

CWL 2) 

CWL 3) 

b~)/2I 

RTtL) 

0. 

sin (tan-’ (GRAD(J) ) ) 

HEND = HEND + GRAD(J) (RT(L) 1 A$(L)/2 1 ) 

VEND = VEND + DVD(J) (RT(L) 1 A$(L)/2 I) 

WP(15) = HEND 

WP(16) = GRAD(J) 

WP(17) = VEND 

WP(18) = DVD(J) 

WP(19) = J 

WP(20) = t 4W/2I 

(2.2l.b) 

(Cont’d. ) 

(2.21c) 
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